Click Buttons Info on the author of this site Go to the Home Page Go to the Contact page Read Site Updates and latest news Go to the Utility Download Page Go to the Web Links Page View or Sign my Guest Book


CHEMISTRY : Metal Cation Identification


Information on BARIUM




  1. General Information

  2. Occurence Uses and Properties

  3. History of the Metal

  4. Compounds
  5. Back to Main Metal List




General Information


Barium (Ba), chemical element, one of the alkaline-earth metals of main Group IIa of the periodic table. The element is used in metallurgy, and its compounds in pyrotechnics, petroleum mining, and radiology.




Occurrence, uses, and properties.


Barium, which is slightly harder than lead, has a silvery white lustre when freshly cut. In nature it is always found combined with other elements. The Swedish chemist Carl Wilhelm Scheele discovered (1774) a new base (baryta, or barium oxide) as a minor constituent in pyrolusite, and from this base he prepared some crystals of barium sulfate, which he sent to Johan Gottlieb Gahn, the discoverer of manganese. A month later Gahn found that the mineral barite is also composed of barium sulfate. Only after the electric battery became available could Sir Humphry Davy finally isolate (1808) the element itself by electrolysis.

Though barium minerals are dense, barium itself is comparatively light. Barium constitutes about 0.04 percent of the Earth's crust, chiefly as the minerals barite and witherite. Commercial production of barium depends upon the electrolysis of fused barium chloride or the reduction by aluminum of a mixture of barium monoxide and peroxide in an electrically heated vacuum furnace.

The metal is used as a getter in electron tubes to perfect the vacuum by combining with final traces of gases, as a deoxidizer in copper refining, and as a constituent in certain alloys. The alloy with nickel readily emits electrons when heated and is used for this reason in electron tubes and in spark plug electrodes. The presence of barium (atomic number 56) after uranium (atomic number 92) had been bombarded by neutrons was the clue that led to the recognition of nuclear fission (1939).

Naturally occurring barium is a mixture of seven stable isotopes: barium-138 (71.66 percent), barium-137 (11.32 percent), barium-136 (7.81 percent), barium-135 (6.59 percent), barium-134 (2.42 percent), barium-130 (0.101 percent), and barium-132 (0.097 percent). About twice this many radioactive isotopes have been prepared with mass numbers ranging from 126 to 143. In its compounds barium has an oxidation state of +2. The Ba2+ ion may be precipitated from solution by the addition of carbonate (CO32-), sulfate (SO42-), chromate (CrO42-), or phosphate (PO42-) anions. All soluble barium compounds are toxic.



History


The earliest known alkaline earth was lime (Latin: calx), which is now known to be calcium oxide; it was used in ancient times in the composition of mortar. Magnesia, (the name derives probably from the ancient district of Magnesia in Asia Minor), the oxide of magnesium, was shown to be an alkaline earth different from lime by the Scottish chemist Joseph Black in 1755; he observed that magnesia gave rise to a soluble sulfate, whereas that derived from lime was known to be insoluble. In 1774 Carl Wilhelm Scheele, the Swedish chemist who discovered oxygen, found that the mineral called heavy spar or barys (Greek: heavy) contained a new earth, which became known as baryta (barium oxide). A further earth, strontia (strontium oxide), was identified by the London chemists Adair Crawford and William Cruickshank in 1790 on examining a mineral (strontium carbonate) found in a lead mine at Strontian in Argyllshire, Scotland.

Beryllia (beryllium oxide) was extracted from the mineral beryl and recognized as an earth by the French analytical chemist Nicolas-Louis Vauquelin in 1798. Though at first confused with alumina (aluminum oxide) because both dissolve in alkali, beryllia was shown to be distinct; unlike alumina, it reprecipitated when the alkaline solution was boiled for some time. Beryllia was originally called glucina (Greek glykys, sweet) because of its sweet taste. (This etymological root is retained in France, where the element beryllium is also known as glucinium.)


Magnesium, calcium, strontium, and barium--elements derived from alkaline earths--were isolated as impure metals by Sir Humphry Davy in 1808 by means of the electrolytic method he had previously used for isolating the alkali metals potassium and sodium. The alkaline-earth metals were later produced by reduction of their salts with free alkali metals, and it was in this way (the action of potassium on beryllium chloride) that beryllium was first isolated by the German chemist Friedrich Wöhler and the French chemist Antoine Bussy independently in 1828. Radium was discovered in 1898 by means of its radioactivity by Pierre and Marie Curie, who separated it from barium.



Chemical compounds


Most barium compounds are produced from the sulfate via reduction to the sulfide. Barium sulfate (BaSO4), a white, heavy powder that occurs in nature as the mineral barite, is one of the most insoluble salts known. It is widely used as a filler (e.g., in paper and rubber) and finds an important appliCATion as an opaque medium in the X-ray examination of the gastrointestinal tract. Lithopone, a mixture of barium sulfate and zinc sulfide, is a brilliant white pigment.

A number of uses of barium compounds depend on the ready formation of the highly insoluble sulfate. Thus the compound barium carbonate (BaCO3), perhaps the most important barium compound, is employed in removing sulfate from salt brines before they are fed into electrolytic cells (for the production of chlorine and alkali). The carbonate also is used to make other barium chemicals, as a flux in ceramics, and in the manufacture of optical glass, fine glassware, and ceramic permanent magnets for loudspeakers. Although barium carbonate is not soluble in water, it dissolves in the hydrochloric acid of the stomach and thus is used in rat poisons.

Another barium compound, barium chloride (BaCl22H2O), consisting of colourless crystals that are soluble in water, is utilized in heat-treating baths, in laboratories as a chemical reagent to precipitate soluble sulfates, and on a commercial scale with sodium sulfate to form a white filler and pigment (blanc fixe) for leather, rubber, cloth, and photographic paper. The oxygen compound barium peroxide (BaO2) is used for both oxygen production and as a source of hydrogen peroxide. Volatile barium compounds impart a yellowish green colour to a flame owing to the emission of light of mostly two characteristic wavelengths. Barium nitrate, formed with the nitrogen-oxygen group NO-3, and chlorate, formed with the chlorine-oxygen group ClO-3, are used for this effect in green signal flares and fireworks.

atomic number 56 atomic weight 137.34 melting point 725 C boiling point 1,640 C specific gravity 3.5 (20C) valence 2 electronic config. 2-8-18-18-8-2 or (Xe)6s2

    Reference: Encyclopædia Britannica, Inc. 1994-2000 ©


Back to Menu Page





Chemistry Section Links